

Final Report

On

Evaluation of Novocrete® Binding Material for

the Stabilisation of Soils in Nigeria.

Prepared By:

Nigerian Building and Road Research institute Ahmadu Bello University Consultancy Services Tectonics Engineering and Consults Ltd

January 2018.

LEFT BLANK INTENTIONALLY

Endorsements:

Executive Summary

The provision of infrastructure has become a reoccurring feature in the country. Often, the insufficient infrastructure currently provided experiences wear too soon and rarely meet its design lifespan.

In the face of dwindling resources, a rethink of approach is necessary for Nigeria to overcome these infrastructural challenges. Such approach should be sustainable and capable of delivering more while reducing the cost of constant maintenance and arrest rapid infrastructural decay.

The present study is directed towards optimizing site conditions to suit desired characteristics and therefore reducing pavement thickness, cost and construction overrun. This will be achieved by improving the soil strength.

The aim of this investigation is to ascertain the suitability of a stabilizing material (Novocrete) through proper tests in the Nigerian conditions.

This was done by determining the properties of the native materials in unblended states and then compared with the properties exhibited with cement only and cement blended with Novocrete®.

Novocrete® is a powder mineral used as a concrete add mixture in Portland cement. Novocrete® combined with Portland cement at optimal water content is intended to increase crystallized formations during the hydration process, resulting in higher strengths. It also neutralizes pH levels and provides water impermeability.

OPIS NG is the only company with exclusivity rights licensed to distribute and use the Novocrete stabilization technology in Nigeria and six other African countries. In the present study, Ordinary Portland Cement (**Dangote**) – Grade 42.5 was used. The testing team consisted of members from the OPIS NG Team, Nigerian Institute of Building and Road Research Institute **NBRRI**, Ahmadu Bello University Consultancy Services **ABUCONS** as well as Tectonics Engineering and Consults Ltd.

Tests.

All tests were carried out in the laboratories of Nigerian Institute of Building and road research institute NBRRI Jabi, Ahmadu Bello University Consultancy Services ABUCONS as well as Tectonics Engineering and Consults Ltd, Kado Abuja.

Findings.

Furthermore, it is shown that Novocrete, due to its evident consistent and significant higher initial strength and bearing capacity, allows a faster construction. This results in saving resources and saving costs since Novocrete® infrastructure can be reopened earlier for use.

Additionally, Novocrete® reduces overall construction costs by requiring less pavement thickness and provide lasting transport facilities. It also enhances soil stability in irrigation and drainage projects.

Although stabilization is an effective alternative for improving soil properties, the engineering properties derived from stabilization vary widely due to heterogeneity in soil composition.

These variations necessitate the consideration of site-specific treatment options which must be validated through testing of soil-stabilizer mixtures.

However, more studies to discover a more economic binding content is required. It is advised that a binding content between 3% and 8 % be targeted.

This is achievable by increasing the Novocrete content and reducing the cement content to getting a better mix balance. Reducing the cement content will also reduce the chances of cracks as well as further drive down construction costs.

<u>Table of Contents</u>	
Executive Summary	<i>iv</i>
Tests:	iv
Findings:	<i>v</i>
INTRODUCTION	1 -
Test program	6 -
SAMPLE COLLECTION	7 -
Test Scope	
TESTING OF UNBLENDED MATERIALS	11 -
Natural Water Content results	12 -
Sieve Analysis results	12 -
Atterberg Limits Results	13 -
Compaction and CBR results	15 -
Classification results	16 -
TESTING WITH MINERAL BLENDING LABORATORY PROCEDURES:	17 -
Cement type	18 -
Curing Procedure	20 -
Loss of Ignition results:	22 -
Abuja	23 -
CBR Results and Conclusions:	23 -
Abuja: Compaction Comparison Results:	24 -
Abuja CBR Compaction Comparison Results	25 -
Abakaliki:	26 -
CBR Results and Conclusions:	
Abakaliki Compaction Comparison Results	29 -
Abakaliki CBR Comparison Results	30 -
Oshogbo:	31 -
CBR Results and Conclusions	31 -
Oshogbo Compaction Comparison Results	32 -
CBR Comparison Results	
Sapele	
CBR Results and Conclusions	
Sapele Compaction Comparison Results	

Sapele CBR Comparison Results	36 -
Gombe:	37 -
CBR Results and Conclusions	37 -
Gombe Compaction Comparison Results	38 -
Gombe CBR Comparison Results:	39 -
Sokoto	40 -
CBR Results and Conclusions	40 -
Sokoto Compaction Comparison Results	41 -
Sokoto CBR Comparison Results:	43 -
Abuja UCS:	44 -
Unconfined Compression Results and Conclusion	44 -
Abakaliki UCS:	45 -
Unconfined Compression Results:	45 -
Oshogho UCS:	46 -
Unconfined Compression Results:	46 -
Sapele UCS	47 -
Unconfined Compression results:	47 -
Gombe UCS	48 -
Unconfined Compression Results	48 -
Sokoto UCS:	49 -
Unconfined Compression Results:	49 -
RECOMMENDATIONS.	50 -
APPENDICES	52 -

INTRODUCTION

Transport infrastructures such as road and rail have received extra attention by the present administration in a bid to connect more cities and encourage access to agricultural produce. It is therefore pertinent to devise alternative means of construction with a view to doing more with lesser resources.

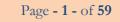
The idea behind this study is aimed towards stabilizing the base course layer of the loadbearing layers of soil and increasing the loadbearing capacity.

Novocrete® stabilizing agent was evaluated to ascertain if added value can be derived and to achieve objectives as stated below.

It is desired that the approach should provide the following advantages:

- ✓ Stabilization of in-situ materials to be used instead from borrows pits.
 This is with a view to reduce construction costs.
- ✓ Use of Novocrete[®] and Cement blended soil as pavement layer for highways and Rural roads without necessarily using bituminous mix.
- ✓ Use of Novocrete[®] and Cement blended soil layer below track underlays for rail Transport on weak soil formation to facilitate high speed train networks construction.
- ✓ Stabilization of embankments.
- ✓ Used for dam construction, irrigation canals.
- ✓ Construction of pavements on soft soils or in areas where borrow pits are far from the sites.
- ✓ Usage of recyclable aggregates and old asphalt pavement aggregate, etc.,

The impact on the improvement of **California Bearing ratio** and **Unconfined Compressive Strength** of soils are investigated.


These two parameters are key to a successful engineering design. Local (Federal Ministry of Works Design Manual) codes of practice are relied on as well as the British Standards (BS) and American Association of State Highway and Transportation Officials (AASHTO) standards.

All laboratory tests reference relevant guides in the method of test applied.

The evaluation of the effect of cement and Novocrete® mineral blend in the improvement of soil for construction purposes has been completed.

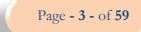
Samples were recovered for ex-situ examination in the laboratory.

The results of the sampling and its analysis are included in this report.

The Novocrete® team, led by Dipl. Geol. Jasmine Al–Obaidi (Germany) were in Nigeria to monitor the evaluation of the blended material alongside staff of participating agencies as listed below:

- \checkmark Tectonics Engineering and Consults ltd
- ✓ Ahmadu Bello University Zaria
- ✓ Nigerian Institute of Building and Road Research Institute (NIBRRI)
- ✓ Federal Capital Development Agency (Engineering Design Department)
- ✓ Federal Ministry of Works, Engineering Design Department

This report describes the procedures followed in the evaluation, presents the test results obtained, and provides recommendations for use in in the design of infrastructure. All relevant laboratory tests were performed in accordance with relevant standards as stated in the laboratory results attached as appendices.


Prior to the commencement of the program, a meeting was held at **Tectonics House** Kado, Abuja, Nigeria, with key members of the evaluation committee in attendance to adopt the approach as well as emphasize expected outcome.

S/NO	NAMES	ORGANISATION
1	Prof. Ibrahim Garba	V.C . A.B.U Zaria
2	Prof. D.S. Matawal	DG. NBRRI-FMST Abuja
3	Onwubuya Ken	Procurement SPEC.
4	Josh Adagiri	Tectonics Engineering & Consults LTD
5	Solomon Godsi	Kamdax Nig Ltd.
6	Engr. Odinaka Ogbonnu	Tectonics Engineering & Consults LTD
7	Anthony Joseph Terna	ABUCONS
8	Engr Dabo .M. Idris	FMPW & H (Works)

In attendance were:

9	Sa'ad .A. Bello	Tectonics Engineering & Consults LTD
10	Jasmin Alobaidi	OPIS AG
11	Odofin Micheal	Tectonics Engineering & Consults LTD
12	Joey Samuel	OPIS NG
13	Aisha Kawu Gombe	Tectonics Engineering & Consults LTD.
14	Engr. Jimoh Babatunde	Tectonics Engineering & Consults LTD
15	Muhammad Musaddiq Muhammed	Tectonics Engineering & Consults LTD
16	Ibrahim .k. Elizabeth	Tectonics Engineering & Consults LTD

The managing partner of Tectonics Engineering ltd, DG NBRRI (Prof. Mattawal) and the Novocrete team

Program Inception and deliberations

Dipl. Geol. Jasmin Al-Obaidi - OPIS AG, Germany

Novocrete representatives & VC ABU (Prof. Garba)

Test program

The program was designed to experiment with various types of existing soils prevalent in Nigeria and the spread covering the six major zones were adopted. The samples were taken from the locations as below:

Sample source	State	Zone
Abakaliki	Ebonyi state	South-east Nigeria
Sapele	Delta state	South-South Nigeria
Oshogbo	Osun state	South-West Nigeria
Abuja	Federal capital Territory	North-Central, Nigeria
Gombe	Gombe	North-East Nigeria
Sokoto	Sokoto	North-West, Nigeria

Novocrete® samples were provided to OPiS NG .Key features of Novocrete® are:

- Novocrete is applicable to all types of cohesive and non-cohesive soil, as well as soil types with high organic contents up to 15 % loss on ignition which are usually unsuitable for construction.
- Improves soil properties
- Creating base course layers with high loadbearing capacity by reducing cracking
- Stabilization and immobilization of hazardous materials in one step

Map showing the six regions in Nigeria

SAMPLE COLLECTION

As stated above, samples were collected from the six zones across the country. Below are pictures during the collection:

The scope of the investigation involves evaluating the properties of the types of soils to ascertain.

- Unblended physical and strength properties of soil
- Strength properties of soil when stabilized with cement only
- Strength properties of soil when stabilized with cement and Novocrete mineral blend
- Ascertain the benefit of the mineral blend

Test Scope

Tests on Unblended Sample (each Sample)		
a) Natural Water Content	Each	2
b) Grain size analysis (Sieve)	Each	1
c) Atterberg Limits	Each	1
d) Loss of Ignition (in case of suspected organic content)	Each	1
e) Compaction (Proctor)	Each	1
f) CBR (Unsoaked)	Each	1
g) CBR (Soaked)	Each	1
Tests on Cement Mixed Sample (each Sample)		
a) Compaction (Proctor)	Each	1
b) CBR (Unsoaked)	Each	1
c) CBR (Soaked)	Each	1
d) Unconfined Compression Strength Test	Each	1
Tests on Novocrete-Cement Mixed Sample (each Sample)		
a) Compaction (Proctor)	Each	1
b) CBR (Unsoaked)	Each	1
c) CBR (Soaked)	Each	1
d) Unconfined Compression Strength Test	Each	1

To evaluate the CBR and the UCS (Unconfined Compressive Strength Test) values, the samples with and without cement and mineral blend were moist-compacted at their respective maximum dry unit weight and optimum moisture contents.

To determine the effect of cement and mineral additive (i.e. NOVOCRETE®) on the abovementioned properties, samples of Abuja Jahi, Abakaliki, Gombe and Sokoto location were evaluated for CBR improvements in both the Unsoaked and Soaked states, due to the range of expansive clay minerals types in the fine sieve spectrum; soaked state was tested on the top and the bottom end of the specimen.

While the CBR samples of the locations Oshogbo and Sapele were measured only in the Unsoaked state due to their grain size distribution (main soil type was fine sand).

The measurements on the top and the bottom end of the specimens were also executed here. The CBR of all measured soaked specimens were carried out after 48 hours soaking period.

The prepared specimens for the determination of the unconfined compressive strength were stored moist for 3 days.

Their unconfined compressive strength was determined after a total setting time of 7, 14 and 28 days (residual storage was carried out under room temperature conditions). From the results of unconfined compressive strength tests, the objective was to determine the average percentage increase in strength.

Note: for Sapele and Gombe soil an organic content was indicated.

During the laboratory procedures, it was mentioned that a "loss on ignition" test results will be submitted.

TESTING OF UNBLENDED MATERIALS

This part summarizes the preliminary results conducted before the arrival of the arrival of the Novocrete® team.

It is the determination of material properties in its unblended states.

The testing team included staff of Tectonics Engineering, NBRRI and the Ahmadu Bello University.

F
.va
lua
uatio
р
$\mathbf{O}\mathbf{f}$
of No
Novocrete
čr
ete
\mathbb{R}
Sta
ıbi
oilisatic
atic
ň
Tec
h
lol
200
gy fi
for
y for the S
ş
abi
oilis
satio
ion c
of S
So
ils
Acr
cro
SS S
ĬX
Soils Across Six Zone
me
o Si
of Nigeria.
Vig
eri
ä

Natural Water Content results

The natural water contents were conducted on samples in their natural state and the results obtained are as below.

Test Method:	BS 1377: Part 2: 1990: 3: 2	1990: 3: 2				
	Wat	Water Content test result	est result			
Sample Source	North Central (Abuja)	Abakaliki (South East)	Sapele (South South)	Oshogbo (South West)	Sokoto (North West)	Gombe (North East)
Average Water Cont.	19.5 %	23.3 %	25.9 %	17.6 %	39.9 %	32.2 %

Sieve Analysis results

This refers to the particle gradation of the soil samples, which is determining by the sizes of soils particles.

This is achieved by passing a soil sample through a set of sieves and weighing the amount of material retained on each sieve

sand and Silt/Clay combination can be defined. The wet sieving method is adopted and subsequently oven-dried it using the standardized method. With this test, the composition of gravel,

% passing through sieve no 200 are classified as Coarse-Grained soils. Primarily, soil particles having more than 50 % passing through sieve 200 are classified as Fine-Grained Soils while that having less than 50

ABUJA.(NORTH CENTRAL) ABAKALIKI, EBONYI STATE SOKOTO(NORTH-WEST) GOMBE (NORTH-EAST) OSOGBO, OSUN STATE SAPELE, DELTA STATE Sample Location (SOUTH-SOUTH) (SOUTH WEST) (SOUTH EAST) Sieve No Test Pit Test Pit Test Pit Test Pit Test Pit source : Test Pit Sample No: No: No: No: No: No 96.3~%9.5 mm 3/8 in 100% 100% 100% 100% 100% 93.7 %4.75mm 100% 100% 100% 100% 100% No.4 No.6 97.6 80.6 98.7 86.7 90.2 89.2 3.35 mm % % % % % % No.10 97.0 79.2 98.484.5 88.3 88.4 mm 2.0 % % % % % % No.16 92.173.8 96.476.384.184.8 1.18 mm Particle Size Analysis % % % % % % No.30 No.40 No.50 88.0 65.471.8 68.479.8 79.3 mm 0.6 % % % % % % 0.425 65.7 58.8 62.0 73.5 77.9 76.8 mm % % % % % % 66.2 62.5 61.451.0 74.2 52.1 mm 0.3 % % % % % % No.70 44.344.0 59.0 43.7 71.659.30.25 mm % % % % % % No.100 55.1 %39.2 %68.5 %37.9 %52.6 % 33.7 % 0.15 mm 53.5 %No.200 47.0 % 36.0 % 31.0 % 64.2 %33.0 % 0.075 mm

Evaluation of Novocrete® Stabilisation Technology for the Stabilisation of Soils Across Six Zones of Nigeria.

Atterberg Limits Results

Atterberg limit comprises of three constants: plastic limit, liquid limit and the plasticity index. The liquid limit is defined as the water content at

which the soil passes through the solid state to liquid state.

Page - 13 - of 59

content at which the soil passes from the liquid state to plastic state. for all the soils and the water content obtained is factored with respect to the penetration recorded. The plastic limit is defined as the water Two methods of conducting the liquid limits test are the Casagrande and the cone penetration method. The cone penetrometer method was used

Atterberg Limit Results Table:

		Constit	Constituent Percentages	entages		Atterberg Limits	Limits
Sample Location	Sample source:	Percentage Gravel	Percentage sand	Percentage Fines	Plastic Limit	Liquid limit	Plasticity index
ABUJA. (NORTH CENTRAL)	Test Pit No: 1	$6.3 \ \%$	60.7 %	33.0 %	17	24	7
ABAKALIKI, EBONYI STATE (SOUTH EAST)	Test Pit No: 2	0.0%	35.8 %	64.2~%	21	34	13
OSOGBO, OSUN STATE (SOUTH WEST)	Test Pit No: 3	0.0%	64.0 %	36.0 %	Non- Plastic	72	72
SAPELE, DELTA STATE (SOUTH- SOUTH)	Test Pit No: 4	0.0%	69.0 %	31.0 %	Non- Plastic	32	32
GOMBE (NORTH-EAST)	Test Pit No: 5	0.0%	46.5~%	53.5 %	56	85	29
SOKOTO(NORTH-WEST)	Test Pit No: 6	0.0%	53.0 %	47.0 %	35	72	37

Page - 14 - of 59

Compaction and CBR results

This is the densification of the soil by removing the air void.

The British standard method of compaction was used as stipulated in BS 1377 part 4.

soil samples obtained. The standard compaction method is used to obtain the Maximum Dry Density (MDD) and the Optimum Moisture Content (OMC) of the various

				CBR	3R	CBR	3R
				(Unsoaked)	aked)	(Soaked)	ked)
Sample Location	Sample	Position	MDD	Тор	Btm	Тор	Btm
	SOLT CC:	THO I	(111/Star)				
ABUJA (NORTH CENTRAL)	Test Pit No:	1	2002.8	51.1	68.3	68.3 22.1 16.0	16.0
ABAKALIKI, EBONYI STATE (SOUTH EAST)	Test Pit No:	2	1816.1	12.2	14.4	4.5	2.7
OSOGBO, OSUN STATE (SOUTH WEST)	Test Pit No:	3	1529.3	22.6 14.6	14.6	8.3	13.1
SAPELE, DELTA STATE (SOUTH- SOUTH)	Test Pit No:	4	1587.5	2.7	2.4	2.9	5.6
GOMBE (NORTH-EAST)	Test Pit No:	5	1385.6	5.6	5.3	0	0
SOKOTO(NORTH-WEST)	Test Pit No:	6	1402.1	4.9	4.0	0	0

Page - 15 - of 59

SOKOTO (NORTH-WEST) $A - 7 A - 7 (13)$ Fair to poor	GOMBE (NORTH-EAST) A - 7 A - 7 (15) Fair to poor	SAPELE, DELTA STATEA - 2 - 6A - 2 - 6 (4)Excellent to Good(SOUTH-SOUTH)A - 2 - 6A - 2 - 6 (4)Excellent to Good	OSOGBO, OSUN STATE (SOUTH WEST) A - 7 A - 7 (13) Fair to poor	$\begin{array}{ c c c c c } \hline \textbf{ABAKALIKI, EBONYI STATE} \\ \hline \textbf{(SOUTH EAST)} & A-6 & A-6 & (6) \\ \hline \end{array} \qquad Fair to poor$	ABUJA (NORTH CENTRAL) A - 2 - 4 A - 2 - 4 (0) Excellent to Good	Sample LocationGroupGroupSignificant ConstituentIndexClassificationmaterial	AASHTO Classifications	these criteria, the liquid limit and plasticity index gives a complete classification based on these systems	classified as "fine-grained" while those with less than 50% passing through sieve No. 200 is	These are all-purpose system mostly used because of its flexibility and ease of use. Soils with more than 50% passing through sieve No. 200, is	Transportation officials (AASHTO).	systems have been standardized such as the Unified Soil Classification System (USCS) and the American Association of Highway and	Soils are basically classified by their geologic origin, mineralogy, and particle size and plasticity index. More robust and more comprehensive	Classification results
oor Fair to poor	oor Fair to poor	Good Excellent to Good	oor Fair to poor	oor Fair to poor	Good Excellent to Good	nstituent al Rating as Sub-Grade	ifications	sification based on these systems.	ough sieve No. 200 is classified as "	ease of use. Soils with more than 50%		tion System (USCS) and the Ameri	particle size and plasticity index.Mor	
SM	MH	SM	SM	CL	SC-SM	Group Symbol	USC		coarse-gr	% passing		ican Asso	e robust a	
Silty sand	Elastic silt	Silty Sand	Silty Sand	Sandy Lean Clay	Silty, Clayey Sand	Group Name	USCS Soil Classification (ASTM D2487)		classified as "coarse-grained". A combination of	through sieve No. 200, is		ciation of Highway and	and more comprehensive	

Page - 16 - of 59

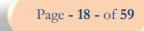
TESTING WITH MINERAL BLENDING LABORATORY PROCEDURES:

This part summarizes results of tests carried-out on in December 2017.

The testing team included staff of Tectonics Engineering, NBRRI and the Ahmadu Bello University under the supervision of Dipl. Geol. Jasmine Al-Obaidi the Novocrete® Expert. This involves:

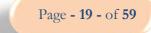
- Compaction characteristics of soil with Cement (OPC) alone. Binder content for OPC is stated in the tables below.
- Compaction characteristics of soil with and with Cement (OPC) and Novocrete®. Binder content for OPC and Novocrete® are stated in the tables below
- CBR characteristics of soils with Cement (OPC) alone in the soaked and Unsoaked states
- CBR characteristics of soils with Cement (OPC) and Novocrete® mineral blending in the soaked and Unsoaked states
- UCS characteristics of soils with Cement (OPC) alone.
- UCS characteristics of soils with Cement (OPC) and Novocrete mineral blending
- Effect of binder types and their percentage contents (OPC and Novocrete®)

Since the objective of this investigation was to achieve the effect of Novocrete® in cement-stabilized soils compared to conventional cement-stabilized without additive and to reduce the extensive range of tests, the execution of the tests was limited to one cement type and respectively one Novocrete®-cement – mix content per soil type.


The cement content recommendation was based on the present laboratory results of the unblended soils as well as on experience by OPIS AG, Switzerland.

The table below lists the recommended cement contents for each tested soil. For the test series with Novocrete®, a Novocrete® content of **2 %** (calculated on the recommended cement amount) was added.

Sample location	Recommended cement content (kg/m ³)
Jahi, Abuja (North Central)	170
Abakaliki, Ebonyi (South East)	190
Oshogbo, Osun State (South West)	200
Sapele, Delta State (South South)	180
Gombe (North East)	210
Sokoto (North West)	200


Cement type

In the present study, Ordinary Portland Cement (OPC) – Grade 42.5 was used. The manufacturer **Dangote** Portland cement and available nationwide.

- 1) The Type of cement used in the study is the ordinary Portland cement Grade 42.5
- 2) Blending procedures for the binders are batched by weight
- 3) Required quantity of water (optimum moisture content, OMC, of the mix) was mixed to the soil, as determined in the proctor tests, and thoroughly mixed.
- 4) The wet mix was allowed to react by keeping it aside for one hour.

5) After one hour, the reacted mix was used to prepare required CBR or UCS samples.

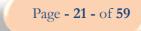
It was also ensured that proper judgment of moisture in mix by touch with hands was done before compaction.

Curing Procedure

All UCS samples of 100 mm diameter and 150 mm height were compacted to their respective maximum dry unit weight and optimum water content and allowed for curing of 7, 14 and 28 days respectively.

The prepared samples were kept inside the desiccator and cured for a period of three days initially.

Water was sprayed on the sample regularly 2 times a day during this span.


After completion of 3 days of curing, these samples were taken out of desiccator and air dried for 4 days, till the date of testing i.e., for 7 days.

The remaining 14 days samples were air dried for 11 days.

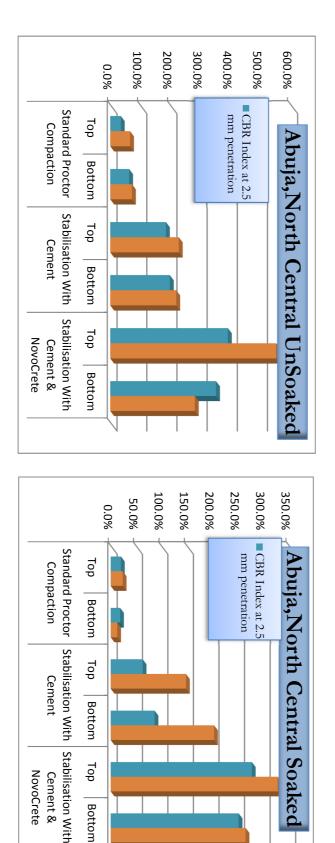
The remaining 28 days samples were air dried for the 25 days.

Laboratory tests in progress

Loss of Ignition results.

Test Method	ASTM D2974		
	Organ	Organic Content test result	esult
Sample Source	Sapele (South	Sokoto (North	Gombe (North
	South)	West)	East)
Average Organic Matter Cont.	7.9%	5.3%	4.5%

Abuja


CBR Results and Conclusions:

Abuja (North Centr	al)							
# 1		Percer	ntage Cer	nent add	ed	8.4	%00	170 Kg/M3
1 meter		Percer	ntage Cei	nent +No	ovocrete		6%	173.4 Kg/M3
942		Weigh	t of Ram	mer:	2.5 K	0,6,		
25		Numb	er of Lay	rers:	<u>ى</u>			
	CO	MPAC	TION	TEST R	ESUL'	T		
			Test	Samples				
Ave. Water Cont. %	8.3	11.5	13.9	17.4		O.M.C		9.0%
Dry Density g/Cm3	1990	1947	1825	1752		M.D. D		2002.8
Ave. Water Cont. %	1.7	4.6	7.6	10.7	13.3	O.M.C		10.0%
Dry Density g/Cm3	1918	1873	1794	2021	2000	M.D. D	-	2045.1
Ave. Water Cont. %	7.6	10.7	13.3	15	18.4	O.M.C		11.5%
Dry Density g/Cm3	1794	2021	2000	1922	1825	M.D. D		2030.7
	Abuja (North Centr # 1 # 1 1 meter 942 25 Ave. Water Cont. % Dry Density g/Cm3 Dry Density g/Cm3	uja (North Central) #1 #1 neter 2 3 4 4 4 5 5 6 7 6 7 6 7 6 7 7	COX 8.3 1990 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	CON 8.3 1990 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Percentage Cement addPercentage Cement addPercentage Cement +NWeight of Rammer:Number of Layers:Test SamplesSamples8.311.513.917.419901947182517521.74.67.610.719181873179420217.610.713.3151794202120001922	Percentage Cement addPercentage Cement addPercentage Cement +NWeight of Rammer:Number of Layers:Test Samples8.3 11.5 13.9 17.4 1990 1947 1825 1752 1.7 4.6 7.6 10.7 1.7 4.6 7.6 10.7 13.3 15 1794 2021 2000 1922	Percentage Cement added Percentage Cement +Novocrete Weight of Rammer: $2.5 \ \text{Kg}$ Number of Layers: 3 I1.5 13.9 17.4 0.1 1990 1947 1825 1752 $M.1$ 1.7 4.6 7.6 10.7 13.3 0.1 7.6 10.7 13.3 15 18.4 0.1 1794 2021 2000 1922 1825 M.1	$\begin{tabular}{ c c c c } \hline Percentage Cement added \\ \hline Percentage Cement +Novocrete \\ \hline Weight of Rammer: 2.5 Kg \\ \hline Wumber of Layers: 2.5 Kg \\ \hline Number of Layers: 3 \\ \hline Samples \\ \hline Test Samples \\ \hline Samples \\ \hline Sample \\ \hline Sampl$

Page - 23 - of 59

Abuja: Compaction Comparison Results:

Abuja, North Central		Cbr Index	Cbr Index Unsoaked		Cbr Index Soaked
		2.5mm	5.0mm	2.5mm	5.0mm
Percentage increase on Cement	Тор	110%	54%	336%	121%
Stabilisation					
	Btm	177%	28%	3%	1%
Average Percentage increase on Cement	ent	143%	41%	170%	61%
Stabilisation					

Page - 24 - of 59

Abuja CBR Compaction Comparison Results

Abuja , North Central	ral					
Percentage Cement added	added	8.5%	Percentage Cement +Novocrete	je Cem le	ent	8.7%
Mass per unit Volume (Kg/m ³)	me	170.0 Kg/m ³	Mass per unit Volume (Kg/m ³)	unit Vo	olume	173.4 Kg/m ³
		Cbr Index UnSoaked	oaked		Cbr Index Soaked	Soaked
		2.5mm	5.0mm		2.5mm	5.0mm
Standard Proctor	Тор	35.6%	%5.99	Тор	20.5%	24.0%
Compaction	Btm	63.6%	73.0%	Btm	18.9%	13.0%
Stabilisation With	Тор	186.4%	229.0%	Тор	63.6%	148.5%
Controlit	Btm	199.2%	220.5%	Btm	87.1%	203.5%
Stabilisation With	Тор	391.7%	352.3%	Тор	277.3%	328.0%
NovoCrete	Btm	551.5%	282.0%	Btm	251.5%	265.0%

Page - 25 - of 59

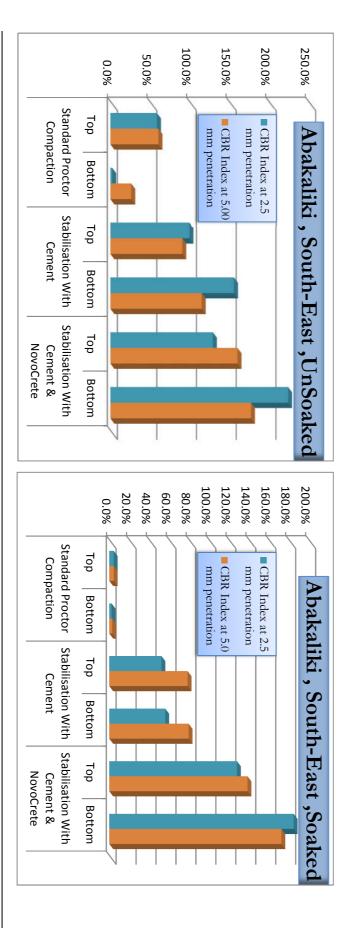
Unblended Soil % increase on Cement Stab. Ave. % increase on Cement Stabilisation	Rfm	Г
		ao
110% 177% 143%	767%	Top 1000%
41%	286%	430%
	1231%	1253%
121% 1% 61%	1938%	1267%

Page - 26 - of 59

Abakaliki.

Only Number of Blows: Cement & Novocrete Soil Type (USCS) CL Sample depth **Cement Stabilization Unblended Soils** Vol of mould (cm3) Trial Pit. Location: 942# 2 Ave. Water Cont. % Ave. Water Cont. % 25 Dry Density g/Cm3 Dry Density g/Cm3 Ave. Water Cont. % COMPACTION TEST RESULT 1 meter ABAKALIKI, EBONYI STATE (SOUTH EAST) 8.1 11.11739 10.8 Test Samples 165316761813 14.214.111.1Number of Layers: Percentage Cement added Weight of Rammer. Percentage Cement +Novocrete 16941748 16.916.414.121.2176516.4161918.5173420.5 18.52.5 Kg ω O.M.C O.M.C M.D. D O.M.C M.D. D 10.67% 10.46% 193.8 Kg/M3 190 Kg/M3 17.5%1869.8 1816.113.5%13.5%

Evaluation of Novocrete® Stabilisation Technology for the Stabilisation of Soils Across Six Zones of Nigeria.


Page - 27 - of 59

CBR Results and Conclusions: Evaluation of Novocrete® Stabilisation Technology for the Stabilisation of Soils Across Six Zones of Nigeria. Dry Density g/Cm3 1676 1694 176517341719 M.D. D 1784.1

Page - 28 - of 59

Abakaliki Compaction Comparison Results

Abakaliki, South-East		Cbr Index	Cbr Index Unsoaked	Cbr Index Soaked	Soaked
		2.5mm	5.0mm	2.5mm	5.0mm
Percentage increase on Cement Stabilisation	Тор	%00	146%	145%	76%
	Btm	%	54%	6%	3%
Average Percentage increase on		16%	100%	75%	40%
Cement Stabilisation					

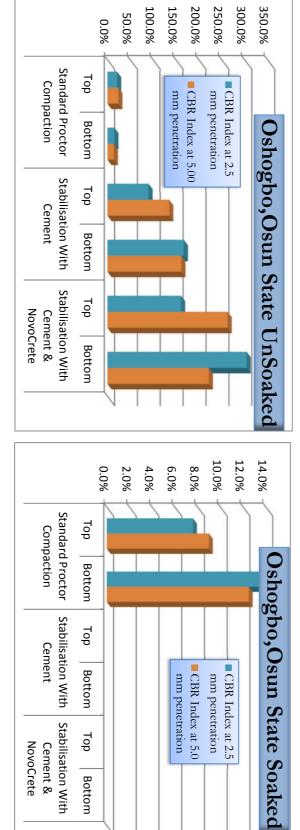
Page - 29 - of 59

Abakaliki CBR Comparison Results

					nc	on Cement Stabilisation
40%	75%		100%	16%	rease	Average Percentage increase
3%	6%		54%	3%	Btm	Cement Stabilisation
76%	145%		146%	30%	Тор	Percentage increase on
5650%	7935%		570%	6878%	Btm	Unblended
2978%	2744%		268%	119%	Тор	Percentage increase on
172.5%	184.8%	Btm	177.5%	160.5%	Btm	Cement & NovoCrete
138.5%	128.0%	Тор	224.2%	129.5%	Тор	Stabilisation With
79.5%	56.1%	Btm	115.5%	156.1%	Btm	
78.5%	52.3%	Тор	91.0%	100.0%	Тор	Stabilisation With
3.0%	2.3%	Btm	26.5%	2.3%	Btm	Compaction
4.5%	4.5%	Тор	61.0%	59.1%	Тор	Standard Proctor
5.0mm	2.5mm		5.0mm	2.5mm		
Cbr Index Soaked	Cbr Inc		nSoaked	Cbr Index UnSoaked		
)	(Kg/m ³)				(Kg/m ³)
193.8 Kg/m ³	Mass per unit Volume	er unit	Mass pe	196.0 Kg/m ³	me	Mass per unit Volume
	ete	+Novocrete	+1			
10.7%	ement	Percentage Cement	Percet	10.5%	dded	Percentage Cement added
	last.	outh 1	i state Sc	Abakaliki , Ebonyi state South East .	vbaka	Ą

Page - 30 - of 59

Oshogbo:


CBR Results and Conclusions

Oshogbo, Os	un State (Sou	ıth We	st)				
# 3			Perc	entage (cement a	dded	13.08%	200 Kg/M3
1 meter			Perc +No	ventage (vocrete	Sement		13.34%	204 Kg/M3
942			Wei	ght of Ra	mmer:	2.5 K	` جن ا	
25			Nur	nber of L	ayers:	3		
	С	OM	[PAC]	FION T	EST RI	ESUL	Т	
				Test	Samples			
Ave. Water Cont.		1	16.2	19.9	23.1	27	O.M.C	22.0%
Dry Density g/C			1481	1518	1529	1465	M.D. D	1529.3
Ave. Water Cont.		7	22.9	24.8	27.1	31.2	O.M.C	22.5%
Dry Density g/C		96	1417	1411	1414	1347	M.D. D	1504.5
Ave. Water Cont.		7	22.9	24.8	27.1	31.2	O.M.C	25.0%
Dry Density g/C		96	1417	1411	1414	1347	M.D. D	1417.3
	Oshogbo, Os # 3 1 meter 1 meter 942 942 25 Ave. Water Cont Ave. Water Cont Dry Density g/C Ave. Water Cont Dry Density g/C	Oshogbo, Osun State (# 3 # 3 1 meter 1 meter 942 942 25 Z5 Dry Density g/Cm3 Ave. Water Cont. % 13. Ave. Water Cont. % Dry Density g/Cm3 Ave. Water Cont. % Dry Density g/Cm3 Ave. Water Cont. % 19. Ave. Water Cont. % 13. Are. Water Cont. % 13. Dry Density g/Cm3	Oshogbo, Osun State (Sou # 3 1 meter 942 942 25 Ave. Water Cont. % 13.1 Dry Density g/Cm3 1447 Dry Density g/Cm3 1396 Dry Density g/Cm3 1396	Oshogbo, Osun State (South We $#3$ Perc $#1$ meterPerc1 meter $+Na$ 942Weij942Nur2513.1Ave. Water Cont. %13.1Ave. Water Cont. %1447Ave. Water Cont. %19.7Dry Density g/Cm31396Dry Density g/Cm3139613961417	COMP 13.1 16 1447 14 1396 14 1396 14	Oshogbo, O sun State (South West)# 3Percentage Cement a# 3Percentage Cement a1 meterPercentage Cement a942Percentage Cement942Vovocrete942Veight of Rammer:942Vumber of Layers:25COMPACTION TEST RIAve. Water Cont. %13.116.219.923.116.2Dry Density g/Cm3144714111414Dry Density g/Cm31396141714111414	Itage Cement addinatetage Cementtoretet of Rammer:er of Layers:ON TEST RETest Samples19.923.1151815291411141114111411	tage Cement addedtage Cement2.5 Kgt of Rammer:2.5 Kgt of Layers:2.5 Kgon TEST RESULTTest Samples19.923.12725.815291465M.I151815291465M.I24.827.127.131.224.827.131.20.1141114141347M.I

Page - 31 - of 59

Oshogbo Compaction Comparison Results

Oshogbo, Osun State.		Cbr Inde	Cbr Index Unsoaked	Cbr Index Soaked	Soaked
		2.5mm	5.0mm	2.5mm	5.0mm
Percentage increase on Cement Stabilisation To	Тор	79%	125%	-	I
Bt	Btm	57%	37%	I	I
Average Percentage increase on Cement Stabilisation		68%	81%	I	I

(No Soaked results due to fine grained sand samples)

Page - 32 - of 59

CBR Comparison

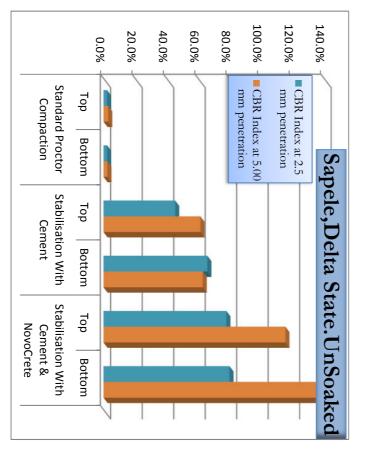
Results

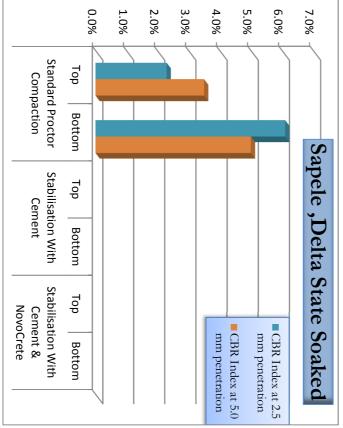
					lisation	on Cement Stabilisation
			81%	68%	e increase	Average Percentage increase
						Stabilisation
						Cement
			37%	57%	Btm	increase on
			125%	79%	Тор	Percentage
			1 10070	1000.20		Unblended
			1486%	1630%	Btm	increase on
			1169%	661%	Тор	Percentage
		ыти	222.0%	263.U%	DITT	NovoCrete
		Jor	000.00/	101.170	Dfm	Cement &
		Ton	304 5%	161 4%	Тор	Stabilisation With
		Btm	162.0%	167.4%	Btm	Cement
		Тор	135.5%	90.2%	Тор	Stabilisation With
12.5%	13.6%	Btm	14.0%	15.2%	Btm	Compaction
9.0%	7.6%	Тор	24.0%	21.2%	Тор	Standard Proctor
5.0mm	2.5mm		5.0mm	2.5mm		
Cbr Index Soaked	Cbr Ind		nSoaked	Cbr Index UnSoaked		
	1 ³)	(Kg/m ³)				(Kg/m ³)
204.0 Kg/m ³	Mass per unit Volume	er uni	Mass p	200.0 Kg/m ³	Volume	Mass per unit Volume
	rete	+Novocrete	+.			added
13.3%	Percentage Cement	ntage	Perce	13.1%	ement	Percentage Cement
	Vest	uth \	Stae So	Oshogbo , osun Stae South West	Osh	

Page - 33 - of 59

Sapele

CBR Results and Conclusions


Location:	Sapele, Delta State (South South) $\frac{\# 4}{4}$	a State (So	uth S	outh	L)	Cement	adde	-	11 34 %	180 Ko/M3
Trial Pit:	# 4			Perce	entage	Percentage Cement adde	adde	đ	11.34 %	180 Kg/M3
Sample depth	1 meter			Perco +No	Percentage + Novocrete	Percentage Cement +Novocrete			11.57 %	183.6 Kg/M3
Vol of mould (cm3)	942			Weig	t of R	Weight of Rammer:	2.	2.5 Kg		
Number of Blows:	25			Num	iber of	Number of Layers:		3		
		C	DMP	ACT	FION	COMPACTION TEST RES	RES	ULT		
Soil Type (USCS) SM					Te	Test Samples	S			
Unblended Soils	Ave. Water Cont. %	. % 13.7	7 17.7	.7	19.1	22.2			O.M.C	20.5%
	Dry Density g/Cm3	m3 1459	9 1510		1567	1510		Ν	M.D. D	1587.5
Cement Stabilization	Ave. Water Cont. %	. % 20.1	21.2	.2	25.8	28.8	30.6		O.M.C	18.0%
Only	Dry Density g/Cm3	m3 1367	7 1451		1414	1351	1296		M.D. D	1755
Cement & Novocrete	Ave. Water Cont. %	. % 20.1	21.2	.2	25.8	28.8	30.6		O.M.C	23.0%
	Dry Density g/Cm3	m3 1367	7 1451		1414	1351	1296		M.D. D	1473


(No soaked results due to fine grained sand sample)

Page - 34 - of 59

Sapele Compaction Comparison Results

Sapele, delta State South-South		Cbr Inde	Cbr Index Unsoaked	Cbr Index Soaked	x Soaked
		2.5mm	5.0mm	2.5mm	5.0mm
Percentage increase on Cement Stabilisation	Тор	71%	30%	I	I
	Btm	75%	116%	I	I
Average Percentage increase on Cement Stabilisation		73%	73%	ı	ı

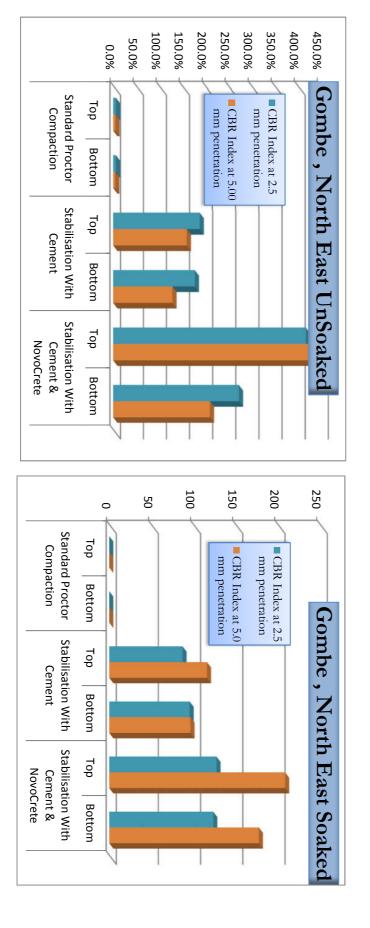
Page - 35 - of 59

<u>Sapele CBR</u>

	B
1	۵
	<u>ല</u>
	2.
	S
	\mathbf{z}
	P
	=
	5

		73%	73%	ease on	Average Percentage increase on Cement Stabilisation
		116%	75%	Btm	Cement Stabilisation
		30%	71%	Тор	Percentage increase on
		5340%	4922%	Btm	
		2567%	3291%	Тор	Percentage increase on Unblended
	Btm	136.0%	115.5%	Btm	
	Тор	80.0%	78.0%	Тор	Stabilisation With Cement & NovoCrete
	Btm	63.0%	65.9%	Btm	
	Тор	61.5%	45.5%	Тор	Stabilisation With Cement
6.1%	Btm	2.5%	2.3%	Btm	
2.3%	Тор	3.0%	2.3%	Тор	Standard Proctor Compaction
2.5mm		5.0mm	2.5mm		
		uked	UnSoa		
Cbr Index Soaked		Idex	Cbr In		
³)	(Kg/m		Kg/m ³		(Kg/m^3)
t Volume	yer uni	Mass 1	180.0	ume	Mass per unit Volume
rete	Novoc	+			
Cement	ntage	Perce	11.3%	added	Percentage Cement added
outh	uth S	ate . Sou	, Delta St	Sapele	
	Outh Cement rete t Volume 2.5mm 2.5mm 2.3% 6.1%	uth South entage Cement Novocrete (Kg/m ³) (Kg/m ³) (Kg/m ³) (Cbr I Top 2.5mm 2.5mm Btm 6.1% Btm 6.1% Btm Btm	Fercentage Cement +NovocreteMass per unit Volume (Kg/m ³)dexCbr IS.Omm2.5mm5.Omm2.5mm5.Omm2.5mm5.Omm2.5mm5.Omm2.5mm5.0mm2.5mm5.0mm2.5mm5.0mm2.5mm5.0mm2.5mm5.0mm2.5mm5.0mm2.5mm5.0m2.5mm5.0m2.5mm5.0m2.5mm5.0m2.5mm6.1.5%Btm6.1.5%Top2.567%Btm2.567%Sth3.0%I3.0%I116%I	. Delta State . South South SouthI 1.3%Percentage Cement11.3%Percentage Cement180.0Mass per unit VolumeKg/m³Cbr IndexCbr IndexCbr IndexCbr IndexCbr IndexCbr I2.5mm5.0mmTop2.5mm2.5mm5.0mm1.3.%Top2.3%2.3%2.5%Btm6.1%45.5%63.0%Btm1.15.5%115.5%136.0%Btm3291%2567%S4922%5340%71%30%1.16%	Ie , Delta State . South South SouthI 1.3%Percentage Cema11.3%Percentage Cema180.0Mass per unit VolKg/m³(Kg/m³)Cbr IndexI Novocrete180.0Mass per unit VolKg/m³Top2.5mm5.0mm2.5mm5.0mm2.3%3.0%45.5%Btm65.9%63.0%115.5%136.0%115.5%136.0%4922%5340%71%30%

Gombe:


Location:	Gombe, Gombe State (North East)	nbe State	(Nor	th Ea	ast)					
Trial Pit:	# 5		I	erce	ntage	Cemer	Percentage Cement added		15.16 %	210 Kg/M3
Sample depth	1 meter			erce	ntage	Cemer	Percentage Cement +Novo	vocrete	15.46 %	214.2 Kg/M3
Vol of mould (cm3)	942			Weigł	Weight of Rammer:	amme		2.5 Kg		
Number of Blows:	25			Num	Number of Layers:	Layers	••	З		
			COM	PAC	TION	V TE	COMPACTION TEST RESULT	ULT		
Soil Type (USCS) MH					Τe	Test Samples	ples			
Unblended Soils	Ave. Water Cont. %	. % 20.7	7 23.6	.6	26.7	29.2	32.1	O.M.C	.C	28.5%
	Dry Density g/Cm3	m3 1365	5 1376		1365	1397	1360	M.D. D	D	1385.6
Cement Stabilization	Ave. Water Cont. %	. % 15	19.3	:3	21.8	24.9	27.4	O.M.C	.C	23.0%
Only	Dry Density g/Cm3	m3 1433	3 1465		1496	1474	1460	M.D. D	D	1486.2
Cement & Novocrete	Ave. Water Cont. %	. % 22.5	5 25.4	.4	28.1	29.8	32.5	O.M.C	.C	24.0%
	Dry Density g/Cm3	m3 1456	6 1306		1446	1406	1372	M.D. D	D	1461.2
BR Results and Conclusions										

<u>CBI</u>

Page - 37 - of 59

Gombe Compaction Comparison Results

Gombe, North East.		Cbr Ind	Cbr Index Unsoaked	Cbr Index Soakec	x Soaked
		2.5mm	5.0mm	2.5mm	5.0mm
Percentage increase on Cement Stabilisation	Top	122%	70%	46%	80%
	Btm	145%	63%	1%	2%
Average Percentage increase on		133%	67%	24%	41%
Cement Stabilisation					

Page - 38 - of 59

Gombe CBR Comparison Results:

	C	Gombe , Gombe	State Nort	h East		
Percentage Cement a	ıdded	15.2%		entage Novoc	Cement rete	15.46
Mass per unit Volu (Kg/m³)	ime	210.0 Kg/m ³	Mass p	er uni (Kg/m	t Volume . ³)	214.2 Kg/m ³
		Cbr Index Ui	nSoaked		Cbr Ind	lex Soaked
		2.5mm	5.0mm		2.5mm	5.0mm
Standard Proctor	Тор	6.1%	5.0%	Тор	0	0
Compaction	Btm	6.1%	4.5%	Btm	0.0%	0.0%
Stabilisation With	Тор	187.9%	160.0%	Тор	87.1%	116.0%
Cement	Btm	177.3%	129.0%	Btm	95.5%	96.5%
Stabilisation With	Тор	417.4%	272.7%	Тор	127.3%	208.5%
Cement & NovoCrete	Btm	433.5%	210.0%	Btm	123.5%	177.5%
Percentage increase	Тор	6743%	5354%		127.3%	208.5%
on Unblended	Btm	7007%	4567%		123.5%	177.5%
Percentage increase on Cement	Тор	122%	70%		46%	80%
Stabilisation	Btm	145%	63%		1%	2%
Average Percentage increase on Ceme Stabilisation		133%	67%		24%	41%

Sokoto

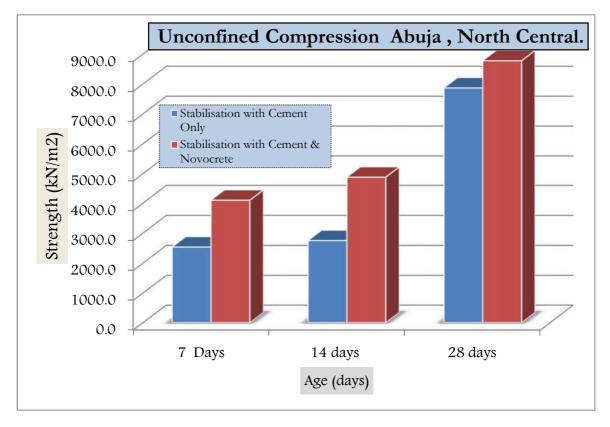
CBR Results and Conclusions

Location:	Sokoto , Sokoto State (North West)	oto State (Nort	h We	st)					
Trial Pit:	6 #			Per	centage	Percentage Cement added	dded	14.	14.26 %	200 Kg/M3
Sample depth	1 meter			Per +N	Percentage Cement +Novocrete	Cement		14.	14.55 %	204 Kg/M3
Vol of mould (cm3)	942			Wei	Weight of Rammer:	ammer:	2.5 Kg	ර්අ්		
Number of Blows:	25			Nu	Number of Layers:	Layers:	3			
		С	OM	PAC	LION J	COMPACTION TEST RES	SULT	Γ		
Soil Type (USCS) SM					Test \$	Test Samples				
Unblended Soils	Ave. Water Cont. %	% 26	(.)	30.8	35.6	38		O.M.C	()	29.0%
	Dry Density g/Cm3	n3 1374		1396	1317	1252		M.D. D	D	1402.1
Cement Stabilization	Ave. Water Cont. %	% 25.8		28.7	32.2	34.3	35.6	O.M.C	()	25.5%
Only	Dry Density g/Cm3	n3 1484		1461	1434	1396	1374	M.D. D	0	1481.7
Cement & Novocrete	Ave. Water Cont. %	% 15.5		25.8	28.7	32.2	34.3	O.M.C	()	24.5%
	Dry Density g/Cm3	n3 1396		1484	1461	1434	1396	M.D. D		1483.2

Page - 40 - of 59

Sokoto Compaction Comparison Results

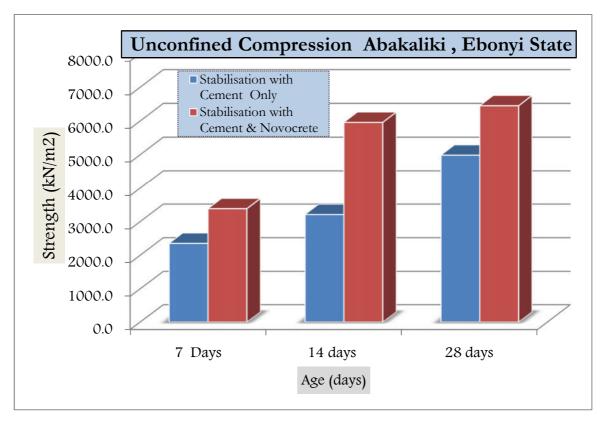
		[]
Average Percentage increase on Cement Stabilisation			Percentage increase on Cement Stabilisation		Sokoto, North West
		Btm	Тор		
	17%	60%	-26%	2.5mm	Cbr Ind
	5%	32%	-21%	5.0mm	Cbr Index Unsoaked
	214%	1%	207%	2.5mm	Cbr Inde
	168%	1%	89%	5.0mm	Cbr Index Soaked



Sokoto CBR Comparison Results:

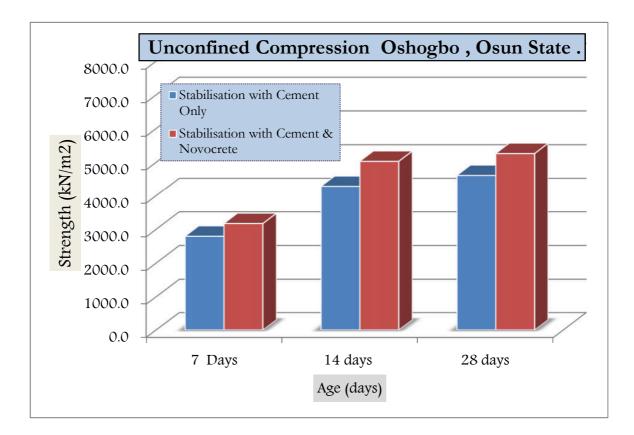
SOKOTO , NORTH WEST .						
Percentage Cement add		14.3%	Percentage Cement +Novocrete		14.6%	
Mass per unit Volume (Kg		200.0 Kg/n	g/n Mass per unit Volume (Kg/m ³)		204.0 Kg	
		Cbr Index	t UnSoaked		Cbr Index Soak	
		2.5mm	5.0mn		2.5mm	5.0mn
Standard Proctor	Тор	5.3%	4.5%	Тор	0.0%	0.0%
Compaction	Btm	4.5%	3.5%	Btm	0.0%	0.0%
Stabilisation With	Тор	162.1%	146.09	Тор	56.1%	94.5%
Cement	Btm	121.2%	133.59	Btm	110.6%	121.09
Stabilisation Witl	Тор	120.5%	115.29	Тор	172.0%	178.59
Cement & NovoCre	Btm	194.0%	176.09	Btm	134.8%	178.09
Percentage increase	Тор	2174%	2460%		172.0%	178.59
Unblended	Btm	4211%	4929%		134.8%	178.09
Percentage increase	-	-26%	-21%		207%	89%
Cement Stabilisation	Btm	60%	32%		1%	1%
Average Percentage	incre	17%	5%		104%	45%
on Cement Stabilisation						

Abuja UCS.


Unconfined Compression Results and Conclusion

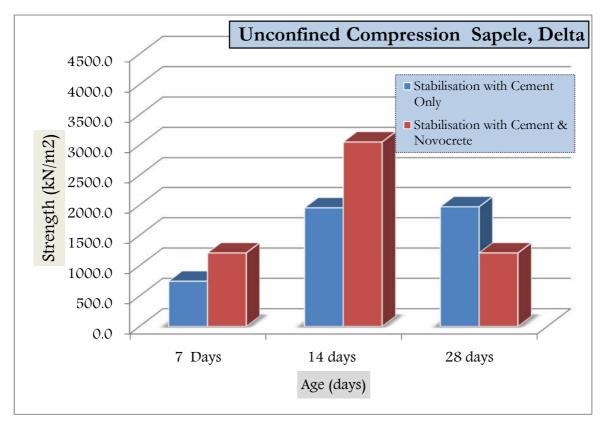
ABUJA,(NORTH CENTRAL)						
Sample Age	Sample Age7 days14 days28 days					
Stabilisation with Cement Only	2532.0 KN/m ²	2748.1 KN/m ²	7863.4 KN/m ²			
Stabilisation with Cement &	4093.7 KN/m ²	4878.3 KN/m ²	8772.55 KN/m ²			
Novocrete						
Percentage Difference	62%	78%	12%			
Average Difference	50.7%					

Abakaliki UCS:


Unconfined Compression Results:

ABAKALIKI,EBONYI (SOUTH EAST)					
Sample Age	7 days	14 days	28 days		
Stabilisation with Cement Only	2355.2	3211.1	4986.9 KN/m ²		
	KN/m ²	KN/m ²			
Stabilisation with Cement & Novocrete	3384.9	5959.7	6452.07 KN/m ²		
	KN/m ²	KN/m ²			
Percentage Difference	44%	86%	29 %		
Average difference		53%			

Oshogbo UCS:


Unconfined Compression Results:

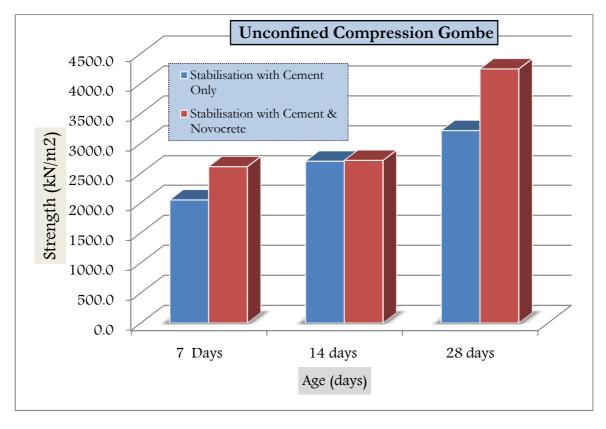
OSHOGBO, OSUN, (SOUTH WEST)				
Sample Age	7 days	14 days	28 days	
Stabilisation with Cement Only	2793.7	4282.0	4608.8	
	KN/m ²	KN/m ²	KN/m ²	
Stabilisation with Cement &	3171.2	5028.3	5259.6	
Novocrete	KN/m ²	KN/m ²	KN/m ²	
Percentage Difference	14%	17%	14%	
Average difference		15%		

Sapele UCS

Unconfined Compression results:

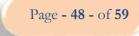
(Result is indicative of high organic content and possibly leaching and chemicals in the soil (sulphates) that reduce the efficiency of the cement hydrolysis process)

SAPELE, DELTA, (SOUTH SOUTH)				
Sample Age	7 days	14 days	28 days	
Stabilisation with Cement Only	1971.1 KN/m ²	1953.4 KN/m ²	742.0 KN/m ²	
Stabilisation with Cement & Novocrete	4144.0 KN/m ²	3048.1 KN/m ²	1208.7 KN/m ²	
Percentage Difference	63%	56%	61%	



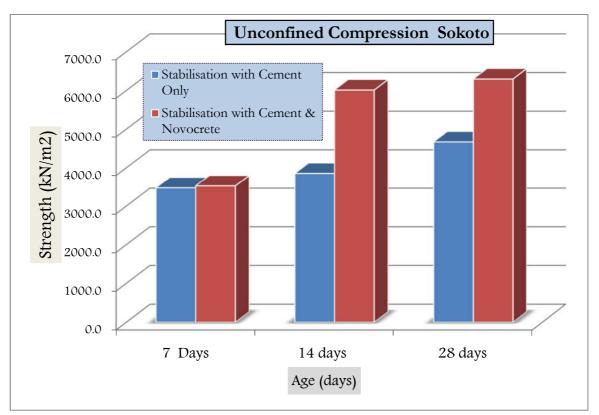
		•
of	Nig	วทาว
U1	TATE	u 1a
-	0	

Average difference	60%


Gombe UCS

Unconfined Compression Results

(Result is indicative of high organic content and possibly leaching and chemicals in the soil (sulphates) that reduce the efficiency of the cement hydrolysis process)


GOMBE, (NORTH EAST)					
Sample Age7 days14 days28 days					
Stabilisation with Cement Only	2048.2 KN/m ²	2701.8 KN/m ²	3213.6 KN/m ²		
Stabilisation with Cement & Novocrete	2611.2 KN/m ²	2716.0 KN/m ²	4243.7 KN/m ²		

Percentage Difference	27 %	1%	32 %
Average difference		20%	

Sokoto UCS.

Unconfined Compression Results:

SOKOTO, (NORTH WEST)				
Sample Age	7 days	14 days	28 days	
Stabilisation with Cement Only	3473.9	3851.6	4668.6	
	KN/m ²	KN/m ²	KN/m ²	
Stabilisation with Cement &	3524.2	6011.7	6296.4	
Novocrete	KN/m ²	KN/m ²	KN/m ²	
Percentage Difference	1%	56 %	35 %	
Average difference		31 %		

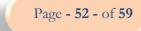
RECOMMENDATIONS.

A major finding is that only an addition of 2% (two percent) binding content of Novocrete® to OPC (Dangote) cement brought an average increment of 70% in the CBR value of soils and an average of 38.3% increment for the unconfined compressive strength of soil.

This difference was obtained by comparing strengths derived from cement blend to that of Cement-Novocrete® blend.

Notably however, as only the effect of Novocrete \mathbb{R} in cement-stabilized soils was shown as the target of this present investigation, it is recommended to carry out laboratory tests with at least two different binder quantities for future projects to determine the exact and economic binder content for the soils in the respective project.

Knowing that each soil type is unique. Generally, a "loss of ignition test" will be carried out to ensure that the organic content would be less than 15%.


Having assessed the correct mixture amounts of binder (Maximum 4% Novocrete®) and the correct cement quantity it is also necessary to consider the chemical characteristics of each soil to determine if one should use SRC (Sulfate Resistant Cement) which again will vary the mixtures of binder additives to the existing soil.

Also, attempts must be made to introduce the material locally to make Novocrete® easily accessible to local contractors. Other areas the blending material, Novocrete® will be relevant are:

- Highway rehabilitation and new road construction
- Irrigation projects and erosion control
- Pipeline routes and distribution pipelines
- Ports, railway tracks and other infrastructure
- Dams and canals
- Walkways
- Logistic depots
- Environmental encapsulation

• Impermeable barriers

APPENDICES

